from __future__ import division, print_function, absolute_import
import os.path as osp
from torchreid.utils import read_json, write_json, mkdir_if_missing
from ..dataset import ImageDataset
[docs]class CUHK03(ImageDataset):
"""CUHK03.
Reference:
Li et al. DeepReID: Deep Filter Pairing Neural Network for Person Re-identification. CVPR 2014.
URL: `<http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html#!>`_
Dataset statistics:
- identities: 1360.
- images: 13164.
- cameras: 6.
- splits: 20 (classic).
"""
dataset_dir = 'cuhk03'
dataset_url = None
def __init__(
self,
root='',
split_id=0,
cuhk03_labeled=False,
cuhk03_classic_split=False,
**kwargs
):
self.root = osp.abspath(osp.expanduser(root))
self.dataset_dir = osp.join(self.root, self.dataset_dir)
self.download_dataset(self.dataset_dir, self.dataset_url)
self.data_dir = osp.join(self.dataset_dir, 'cuhk03_release')
self.raw_mat_path = osp.join(self.data_dir, 'cuhk-03.mat')
self.imgs_detected_dir = osp.join(self.dataset_dir, 'images_detected')
self.imgs_labeled_dir = osp.join(self.dataset_dir, 'images_labeled')
self.split_classic_det_json_path = osp.join(
self.dataset_dir, 'splits_classic_detected.json'
)
self.split_classic_lab_json_path = osp.join(
self.dataset_dir, 'splits_classic_labeled.json'
)
self.split_new_det_json_path = osp.join(
self.dataset_dir, 'splits_new_detected.json'
)
self.split_new_lab_json_path = osp.join(
self.dataset_dir, 'splits_new_labeled.json'
)
self.split_new_det_mat_path = osp.join(
self.dataset_dir, 'cuhk03_new_protocol_config_detected.mat'
)
self.split_new_lab_mat_path = osp.join(
self.dataset_dir, 'cuhk03_new_protocol_config_labeled.mat'
)
required_files = [
self.dataset_dir, self.data_dir, self.raw_mat_path,
self.split_new_det_mat_path, self.split_new_lab_mat_path
]
self.check_before_run(required_files)
self.preprocess_split()
if cuhk03_labeled:
split_path = self.split_classic_lab_json_path if cuhk03_classic_split else self.split_new_lab_json_path
else:
split_path = self.split_classic_det_json_path if cuhk03_classic_split else self.split_new_det_json_path
splits = read_json(split_path)
assert split_id < len(
splits
), 'Condition split_id ({}) < len(splits) ({}) is false'.format(
split_id, len(splits)
)
split = splits[split_id]
train = split['train']
query = split['query']
gallery = split['gallery']
super(CUHK03, self).__init__(train, query, gallery, **kwargs)
def preprocess_split(self):
# This function is a bit complex and ugly, what it does is
# 1. extract data from cuhk-03.mat and save as png images
# 2. create 20 classic splits (Li et al. CVPR'14)
# 3. create new split (Zhong et al. CVPR'17)
if osp.exists(self.imgs_labeled_dir) \
and osp.exists(self.imgs_detected_dir) \
and osp.exists(self.split_classic_det_json_path) \
and osp.exists(self.split_classic_lab_json_path) \
and osp.exists(self.split_new_det_json_path) \
and osp.exists(self.split_new_lab_json_path):
return
import h5py
import imageio
from scipy.io import loadmat
mkdir_if_missing(self.imgs_detected_dir)
mkdir_if_missing(self.imgs_labeled_dir)
print(
'Extract image data from "{}" and save as png'.format(
self.raw_mat_path
)
)
mat = h5py.File(self.raw_mat_path, 'r')
def _deref(ref):
return mat[ref][:].T
def _process_images(img_refs, campid, pid, save_dir):
img_paths = [] # Note: some persons only have images for one view
for imgid, img_ref in enumerate(img_refs):
img = _deref(img_ref)
if img.size == 0 or img.ndim < 3:
continue # skip empty cell
# images are saved with the following format, index-1 (ensure uniqueness)
# campid: index of camera pair (1-5)
# pid: index of person in 'campid'-th camera pair
# viewid: index of view, {1, 2}
# imgid: index of image, (1-10)
viewid = 1 if imgid < 5 else 2
img_name = '{:01d}_{:03d}_{:01d}_{:02d}.png'.format(
campid + 1, pid + 1, viewid, imgid + 1
)
img_path = osp.join(save_dir, img_name)
if not osp.isfile(img_path):
imageio.imwrite(img_path, img)
img_paths.append(img_path)
return img_paths
def _extract_img(image_type):
print('Processing {} images ...'.format(image_type))
meta_data = []
imgs_dir = self.imgs_detected_dir if image_type == 'detected' else self.imgs_labeled_dir
for campid, camp_ref in enumerate(mat[image_type][0]):
camp = _deref(camp_ref)
num_pids = camp.shape[0]
for pid in range(num_pids):
img_paths = _process_images(
camp[pid, :], campid, pid, imgs_dir
)
assert len(img_paths) > 0, \
'campid{}-pid{} has no images'.format(campid, pid)
meta_data.append((campid + 1, pid + 1, img_paths))
print(
'- done camera pair {} with {} identities'.format(
campid + 1, num_pids
)
)
return meta_data
meta_detected = _extract_img('detected')
meta_labeled = _extract_img('labeled')
def _extract_classic_split(meta_data, test_split):
train, test = [], []
num_train_pids, num_test_pids = 0, 0
num_train_imgs, num_test_imgs = 0, 0
for i, (campid, pid, img_paths) in enumerate(meta_data):
if [campid, pid] in test_split:
for img_path in img_paths:
camid = int(
osp.basename(img_path).split('_')[2]
) - 1 # make it 0-based
test.append((img_path, num_test_pids, camid))
num_test_pids += 1
num_test_imgs += len(img_paths)
else:
for img_path in img_paths:
camid = int(
osp.basename(img_path).split('_')[2]
) - 1 # make it 0-based
train.append((img_path, num_train_pids, camid))
num_train_pids += 1
num_train_imgs += len(img_paths)
return train, num_train_pids, num_train_imgs, test, num_test_pids, num_test_imgs
print('Creating classic splits (# = 20) ...')
splits_classic_det, splits_classic_lab = [], []
for split_ref in mat['testsets'][0]:
test_split = _deref(split_ref).tolist()
# create split for detected images
train, num_train_pids, num_train_imgs, test, num_test_pids, num_test_imgs = \
_extract_classic_split(meta_detected, test_split)
splits_classic_det.append(
{
'train': train,
'query': test,
'gallery': test,
'num_train_pids': num_train_pids,
'num_train_imgs': num_train_imgs,
'num_query_pids': num_test_pids,
'num_query_imgs': num_test_imgs,
'num_gallery_pids': num_test_pids,
'num_gallery_imgs': num_test_imgs
}
)
# create split for labeled images
train, num_train_pids, num_train_imgs, test, num_test_pids, num_test_imgs = \
_extract_classic_split(meta_labeled, test_split)
splits_classic_lab.append(
{
'train': train,
'query': test,
'gallery': test,
'num_train_pids': num_train_pids,
'num_train_imgs': num_train_imgs,
'num_query_pids': num_test_pids,
'num_query_imgs': num_test_imgs,
'num_gallery_pids': num_test_pids,
'num_gallery_imgs': num_test_imgs
}
)
write_json(splits_classic_det, self.split_classic_det_json_path)
write_json(splits_classic_lab, self.split_classic_lab_json_path)
def _extract_set(filelist, pids, pid2label, idxs, img_dir, relabel):
tmp_set = []
unique_pids = set()
for idx in idxs:
img_name = filelist[idx][0]
camid = int(img_name.split('_')[2]) - 1 # make it 0-based
pid = pids[idx]
if relabel:
pid = pid2label[pid]
img_path = osp.join(img_dir, img_name)
tmp_set.append((img_path, int(pid), camid))
unique_pids.add(pid)
return tmp_set, len(unique_pids), len(idxs)
def _extract_new_split(split_dict, img_dir):
train_idxs = split_dict['train_idx'].flatten() - 1 # index-0
pids = split_dict['labels'].flatten()
train_pids = set(pids[train_idxs])
pid2label = {pid: label for label, pid in enumerate(train_pids)}
query_idxs = split_dict['query_idx'].flatten() - 1
gallery_idxs = split_dict['gallery_idx'].flatten() - 1
filelist = split_dict['filelist'].flatten()
train_info = _extract_set(
filelist, pids, pid2label, train_idxs, img_dir, relabel=True
)
query_info = _extract_set(
filelist, pids, pid2label, query_idxs, img_dir, relabel=False
)
gallery_info = _extract_set(
filelist,
pids,
pid2label,
gallery_idxs,
img_dir,
relabel=False
)
return train_info, query_info, gallery_info
print('Creating new split for detected images (767/700) ...')
train_info, query_info, gallery_info = _extract_new_split(
loadmat(self.split_new_det_mat_path), self.imgs_detected_dir
)
split = [
{
'train': train_info[0],
'query': query_info[0],
'gallery': gallery_info[0],
'num_train_pids': train_info[1],
'num_train_imgs': train_info[2],
'num_query_pids': query_info[1],
'num_query_imgs': query_info[2],
'num_gallery_pids': gallery_info[1],
'num_gallery_imgs': gallery_info[2]
}
]
write_json(split, self.split_new_det_json_path)
print('Creating new split for labeled images (767/700) ...')
train_info, query_info, gallery_info = _extract_new_split(
loadmat(self.split_new_lab_mat_path), self.imgs_labeled_dir
)
split = [
{
'train': train_info[0],
'query': query_info[0],
'gallery': gallery_info[0],
'num_train_pids': train_info[1],
'num_train_imgs': train_info[2],
'num_query_pids': query_info[1],
'num_query_imgs': query_info[2],
'num_gallery_pids': gallery_info[1],
'num_gallery_imgs': gallery_info[2]
}
]
write_json(split, self.split_new_lab_json_path)