Source code for torchreid.data.datasets.image.prid

from __future__ import division, print_function, absolute_import
import random
import os.path as osp

from torchreid.utils import read_json, write_json

from ..dataset import ImageDataset


[docs]class PRID(ImageDataset): """PRID (single-shot version of prid-2011) Reference: Hirzer et al. Person Re-Identification by Descriptive and Discriminative Classification. SCIA 2011. URL: `<https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/PRID11/>`_ Dataset statistics: - Two views. - View A captures 385 identities. - View B captures 749 identities. - 200 identities appear in both views (index starts from 1 to 200). """ dataset_dir = 'prid2011' dataset_url = None _junk_pids = list(range(201, 750)) def __init__(self, root='', split_id=0, **kwargs): self.root = osp.abspath(osp.expanduser(root)) self.dataset_dir = osp.join(self.root, self.dataset_dir) self.download_dataset(self.dataset_dir, self.dataset_url) self.cam_a_dir = osp.join( self.dataset_dir, 'prid_2011', 'single_shot', 'cam_a' ) self.cam_b_dir = osp.join( self.dataset_dir, 'prid_2011', 'single_shot', 'cam_b' ) self.split_path = osp.join(self.dataset_dir, 'splits_single_shot.json') required_files = [self.dataset_dir, self.cam_a_dir, self.cam_b_dir] self.check_before_run(required_files) self.prepare_split() splits = read_json(self.split_path) if split_id >= len(splits): raise ValueError( 'split_id exceeds range, received {}, but expected between 0 and {}' .format(split_id, len(splits) - 1) ) split = splits[split_id] train, query, gallery = self.process_split(split) super(PRID, self).__init__(train, query, gallery, **kwargs) def prepare_split(self): if not osp.exists(self.split_path): print('Creating splits ...') splits = [] for _ in range(10): # randomly sample 100 IDs for train and use the rest 100 IDs for test # (note: there are only 200 IDs appearing in both views) pids = [i for i in range(1, 201)] train_pids = random.sample(pids, 100) train_pids.sort() test_pids = [i for i in pids if i not in train_pids] split = {'train': train_pids, 'test': test_pids} splits.append(split) print('Totally {} splits are created'.format(len(splits))) write_json(splits, self.split_path) print('Split file is saved to {}'.format(self.split_path)) def process_split(self, split): train_pids = split['train'] test_pids = split['test'] train_pid2label = {pid: label for label, pid in enumerate(train_pids)} # train train = [] for pid in train_pids: img_name = 'person_' + str(pid).zfill(4) + '.png' pid = train_pid2label[pid] img_a_path = osp.join(self.cam_a_dir, img_name) train.append((img_a_path, pid, 0)) img_b_path = osp.join(self.cam_b_dir, img_name) train.append((img_b_path, pid, 1)) # query and gallery query, gallery = [], [] for pid in test_pids: img_name = 'person_' + str(pid).zfill(4) + '.png' img_a_path = osp.join(self.cam_a_dir, img_name) query.append((img_a_path, pid, 0)) img_b_path = osp.join(self.cam_b_dir, img_name) gallery.append((img_b_path, pid, 1)) for pid in range(201, 750): img_name = 'person_' + str(pid).zfill(4) + '.png' img_b_path = osp.join(self.cam_b_dir, img_name) gallery.append((img_b_path, pid, 1)) return train, query, gallery