Source code for torchreid.models.inceptionresnetv2

"""
Code imported from https://github.com/Cadene/pretrained-models.pytorch
"""
from __future__ import division, absolute_import
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo

__all__ = ['inceptionresnetv2']

pretrained_settings = {
    'inceptionresnetv2': {
        'imagenet': {
            'url':
            'http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth',
            'input_space': 'RGB',
            'input_size': [3, 299, 299],
            'input_range': [0, 1],
            'mean': [0.5, 0.5, 0.5],
            'std': [0.5, 0.5, 0.5],
            'num_classes': 1000
        },
        'imagenet+background': {
            'url':
            'http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth',
            'input_space': 'RGB',
            'input_size': [3, 299, 299],
            'input_range': [0, 1],
            'mean': [0.5, 0.5, 0.5],
            'std': [0.5, 0.5, 0.5],
            'num_classes': 1001
        }
    }
}


class BasicConv2d(nn.Module):

    def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(
            in_planes,
            out_planes,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            bias=False
        ) # verify bias false
        self.bn = nn.BatchNorm2d(
            out_planes,
            eps=0.001, # value found in tensorflow
            momentum=0.1, # default pytorch value
            affine=True
        )
        self.relu = nn.ReLU(inplace=False)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class Mixed_5b(nn.Module):

    def __init__(self):
        super(Mixed_5b, self).__init__()

        self.branch0 = BasicConv2d(192, 96, kernel_size=1, stride=1)

        self.branch1 = nn.Sequential(
            BasicConv2d(192, 48, kernel_size=1, stride=1),
            BasicConv2d(48, 64, kernel_size=5, stride=1, padding=2)
        )

        self.branch2 = nn.Sequential(
            BasicConv2d(192, 64, kernel_size=1, stride=1),
            BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1),
            BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1)
        )

        self.branch3 = nn.Sequential(
            nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
            BasicConv2d(192, 64, kernel_size=1, stride=1)
        )

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        x3 = self.branch3(x)
        out = torch.cat((x0, x1, x2, x3), 1)
        return out


class Block35(nn.Module):

    def __init__(self, scale=1.0):
        super(Block35, self).__init__()

        self.scale = scale

        self.branch0 = BasicConv2d(320, 32, kernel_size=1, stride=1)

        self.branch1 = nn.Sequential(
            BasicConv2d(320, 32, kernel_size=1, stride=1),
            BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)
        )

        self.branch2 = nn.Sequential(
            BasicConv2d(320, 32, kernel_size=1, stride=1),
            BasicConv2d(32, 48, kernel_size=3, stride=1, padding=1),
            BasicConv2d(48, 64, kernel_size=3, stride=1, padding=1)
        )

        self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1)
        self.relu = nn.ReLU(inplace=False)

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        out = torch.cat((x0, x1, x2), 1)
        out = self.conv2d(out)
        out = out * self.scale + x
        out = self.relu(out)
        return out


class Mixed_6a(nn.Module):

    def __init__(self):
        super(Mixed_6a, self).__init__()

        self.branch0 = BasicConv2d(320, 384, kernel_size=3, stride=2)

        self.branch1 = nn.Sequential(
            BasicConv2d(320, 256, kernel_size=1, stride=1),
            BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1),
            BasicConv2d(256, 384, kernel_size=3, stride=2)
        )

        self.branch2 = nn.MaxPool2d(3, stride=2)

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        out = torch.cat((x0, x1, x2), 1)
        return out


class Block17(nn.Module):

    def __init__(self, scale=1.0):
        super(Block17, self).__init__()

        self.scale = scale

        self.branch0 = BasicConv2d(1088, 192, kernel_size=1, stride=1)

        self.branch1 = nn.Sequential(
            BasicConv2d(1088, 128, kernel_size=1, stride=1),
            BasicConv2d(
                128, 160, kernel_size=(1, 7), stride=1, padding=(0, 3)
            ),
            BasicConv2d(
                160, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)
            )
        )

        self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1)
        self.relu = nn.ReLU(inplace=False)

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        out = torch.cat((x0, x1), 1)
        out = self.conv2d(out)
        out = out * self.scale + x
        out = self.relu(out)
        return out


class Mixed_7a(nn.Module):

    def __init__(self):
        super(Mixed_7a, self).__init__()

        self.branch0 = nn.Sequential(
            BasicConv2d(1088, 256, kernel_size=1, stride=1),
            BasicConv2d(256, 384, kernel_size=3, stride=2)
        )

        self.branch1 = nn.Sequential(
            BasicConv2d(1088, 256, kernel_size=1, stride=1),
            BasicConv2d(256, 288, kernel_size=3, stride=2)
        )

        self.branch2 = nn.Sequential(
            BasicConv2d(1088, 256, kernel_size=1, stride=1),
            BasicConv2d(256, 288, kernel_size=3, stride=1, padding=1),
            BasicConv2d(288, 320, kernel_size=3, stride=2)
        )

        self.branch3 = nn.MaxPool2d(3, stride=2)

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        x3 = self.branch3(x)
        out = torch.cat((x0, x1, x2, x3), 1)
        return out


class Block8(nn.Module):

    def __init__(self, scale=1.0, noReLU=False):
        super(Block8, self).__init__()

        self.scale = scale
        self.noReLU = noReLU

        self.branch0 = BasicConv2d(2080, 192, kernel_size=1, stride=1)

        self.branch1 = nn.Sequential(
            BasicConv2d(2080, 192, kernel_size=1, stride=1),
            BasicConv2d(
                192, 224, kernel_size=(1, 3), stride=1, padding=(0, 1)
            ),
            BasicConv2d(
                224, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)
            )
        )

        self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1)
        if not self.noReLU:
            self.relu = nn.ReLU(inplace=False)

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        out = torch.cat((x0, x1), 1)
        out = self.conv2d(out)
        out = out * self.scale + x
        if not self.noReLU:
            out = self.relu(out)
        return out


# ----------------
# Model Definition
# ----------------
[docs]class InceptionResNetV2(nn.Module): """Inception-ResNet-V2. Reference: Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI 2017. Public keys: - ``inceptionresnetv2``: Inception-ResNet-V2. """ def __init__(self, num_classes, loss='softmax', **kwargs): super(InceptionResNetV2, self).__init__() self.loss = loss # Modules self.conv2d_1a = BasicConv2d(3, 32, kernel_size=3, stride=2) self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1) self.conv2d_2b = BasicConv2d( 32, 64, kernel_size=3, stride=1, padding=1 ) self.maxpool_3a = nn.MaxPool2d(3, stride=2) self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1) self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1) self.maxpool_5a = nn.MaxPool2d(3, stride=2) self.mixed_5b = Mixed_5b() self.repeat = nn.Sequential( Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17) ) self.mixed_6a = Mixed_6a() self.repeat_1 = nn.Sequential( Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10), Block17(scale=0.10) ) self.mixed_7a = Mixed_7a() self.repeat_2 = nn.Sequential( Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20) ) self.block8 = Block8(noReLU=True) self.conv2d_7b = BasicConv2d(2080, 1536, kernel_size=1, stride=1) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(1536, num_classes) def load_imagenet_weights(self): settings = pretrained_settings['inceptionresnetv2']['imagenet'] pretrain_dict = model_zoo.load_url(settings['url']) model_dict = self.state_dict() pretrain_dict = { k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size() } model_dict.update(pretrain_dict) self.load_state_dict(model_dict) def featuremaps(self, x): x = self.conv2d_1a(x) x = self.conv2d_2a(x) x = self.conv2d_2b(x) x = self.maxpool_3a(x) x = self.conv2d_3b(x) x = self.conv2d_4a(x) x = self.maxpool_5a(x) x = self.mixed_5b(x) x = self.repeat(x) x = self.mixed_6a(x) x = self.repeat_1(x) x = self.mixed_7a(x) x = self.repeat_2(x) x = self.block8(x) x = self.conv2d_7b(x) return x def forward(self, x): f = self.featuremaps(x) v = self.global_avgpool(f) v = v.view(v.size(0), -1) if not self.training: return v y = self.classifier(v) if self.loss == 'softmax': return y elif self.loss == 'triplet': return y, v else: raise KeyError('Unsupported loss: {}'.format(self.loss))
def inceptionresnetv2(num_classes, loss='softmax', pretrained=True, **kwargs): model = InceptionResNetV2(num_classes=num_classes, loss=loss, **kwargs) if pretrained: model.load_imagenet_weights() return model