Source code for torchreid.models.resnet

"""
Code source: https://github.com/pytorch/vision
"""
from __future__ import division, absolute_import
import torch.utils.model_zoo as model_zoo
from torch import nn

__all__ = [
    'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152',
    'resnext50_32x4d', 'resnext101_32x8d', 'resnet50_fc512'
]

model_urls = {
    'resnet18':
    'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34':
    'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50':
    'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101':
    'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152':
    'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d':
    'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d':
    'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
}


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation
    )


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(
        in_planes, out_planes, kernel_size=1, stride=stride, bias=False
    )


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(
        self,
        inplanes,
        planes,
        stride=1,
        downsample=None,
        groups=1,
        base_width=64,
        dilation=1,
        norm_layer=None
    ):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError(
                'BasicBlock only supports groups=1 and base_width=64'
            )
        if dilation > 1:
            raise NotImplementedError(
                "Dilation > 1 not supported in BasicBlock"
            )
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(
        self,
        inplanes,
        planes,
        stride=1,
        downsample=None,
        groups=1,
        base_width=64,
        dilation=1,
        norm_layer=None
    ):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width/64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


[docs]class ResNet(nn.Module): """Residual network. Reference: - He et al. Deep Residual Learning for Image Recognition. CVPR 2016. - Xie et al. Aggregated Residual Transformations for Deep Neural Networks. CVPR 2017. Public keys: - ``resnet18``: ResNet18. - ``resnet34``: ResNet34. - ``resnet50``: ResNet50. - ``resnet101``: ResNet101. - ``resnet152``: ResNet152. - ``resnext50_32x4d``: ResNeXt50. - ``resnext101_32x8d``: ResNeXt101. - ``resnet50_fc512``: ResNet50 + FC. """ def __init__( self, num_classes, loss, block, layers, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, last_stride=2, fc_dims=None, dropout_p=None, **kwargs ): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.loss = loss self.feature_dim = 512 * block.expansion self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}". format(replace_stride_with_dilation) ) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d( 3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False ) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0] ) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1] ) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride, dilate=replace_stride_with_dilation[2] ) self.global_avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = self._construct_fc_layer( fc_dims, 512 * block.expansion, dropout_p ) self.classifier = nn.Linear(self.feature_dim, num_classes) self._init_params() # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer ) ) return nn.Sequential(*layers) def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None): """Constructs fully connected layer Args: fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed input_dim (int): input dimension dropout_p (float): dropout probability, if None, dropout is unused """ if fc_dims is None: self.feature_dim = input_dim return None assert isinstance( fc_dims, (list, tuple) ), 'fc_dims must be either list or tuple, but got {}'.format( type(fc_dims) ) layers = [] for dim in fc_dims: layers.append(nn.Linear(input_dim, dim)) layers.append(nn.BatchNorm1d(dim)) layers.append(nn.ReLU(inplace=True)) if dropout_p is not None: layers.append(nn.Dropout(p=dropout_p)) input_dim = dim self.feature_dim = fc_dims[-1] return nn.Sequential(*layers) def _init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity='relu' ) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def featuremaps(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def forward(self, x): f = self.featuremaps(x) v = self.global_avgpool(f) v = v.view(v.size(0), -1) if self.fc is not None: v = self.fc(v) if not self.training: return v y = self.classifier(v) if self.loss == 'softmax': return y elif self.loss == 'triplet': return y, v else: raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, model_url): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ pretrain_dict = model_zoo.load_url(model_url) model_dict = model.state_dict() pretrain_dict = { k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size() } model_dict.update(pretrain_dict) model.load_state_dict(model_dict) """ResNet""" def resnet18(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNet( num_classes=num_classes, loss=loss, block=BasicBlock, layers=[2, 2, 2, 2], last_stride=2, fc_dims=None, dropout_p=None, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnet18']) return model def resnet34(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNet( num_classes=num_classes, loss=loss, block=BasicBlock, layers=[3, 4, 6, 3], last_stride=2, fc_dims=None, dropout_p=None, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnet34']) return model def resnet50(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNet( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 4, 6, 3], last_stride=2, fc_dims=None, dropout_p=None, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnet50']) return model def resnet101(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNet( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 4, 23, 3], last_stride=2, fc_dims=None, dropout_p=None, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnet101']) return model def resnet152(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNet( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 8, 36, 3], last_stride=2, fc_dims=None, dropout_p=None, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnet152']) return model """ResNeXt""" def resnext50_32x4d(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNet( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 4, 6, 3], last_stride=2, fc_dims=None, dropout_p=None, groups=32, width_per_group=4, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnext50_32x4d']) return model def resnext101_32x8d(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNet( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 4, 23, 3], last_stride=2, fc_dims=None, dropout_p=None, groups=32, width_per_group=8, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnext101_32x8d']) return model """ ResNet + FC """ def resnet50_fc512(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNet( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 4, 6, 3], last_stride=1, fc_dims=[512], dropout_p=None, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnet50']) return model