Source code for torchreid.models.resnetmid

from __future__ import division, absolute_import
import torch
import torch.utils.model_zoo as model_zoo
from torch import nn

__all__ = ['resnet50mid']

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False
    )


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(
            planes,
            planes,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=False
        )
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(
            planes, planes * self.expansion, kernel_size=1, bias=False
        )
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


[docs]class ResNetMid(nn.Module): """Residual network + mid-level features. Reference: Yu et al. The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching. arXiv:1711.08106. Public keys: - ``resnet50mid``: ResNet50 + mid-level feature fusion. """ def __init__( self, num_classes, loss, block, layers, last_stride=2, fc_dims=None, **kwargs ): self.inplanes = 64 super(ResNetMid, self).__init__() self.loss = loss self.feature_dim = 512 * block.expansion # backbone network self.conv1 = nn.Conv2d( 3, 64, kernel_size=7, stride=2, padding=3, bias=False ) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride ) self.global_avgpool = nn.AdaptiveAvgPool2d(1) assert fc_dims is not None self.fc_fusion = self._construct_fc_layer( fc_dims, 512 * block.expansion * 2 ) self.feature_dim += 512 * block.expansion self.classifier = nn.Linear(self.feature_dim, num_classes) self._init_params() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False ), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None): """Constructs fully connected layer Args: fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed input_dim (int): input dimension dropout_p (float): dropout probability, if None, dropout is unused """ if fc_dims is None: self.feature_dim = input_dim return None assert isinstance( fc_dims, (list, tuple) ), 'fc_dims must be either list or tuple, but got {}'.format( type(fc_dims) ) layers = [] for dim in fc_dims: layers.append(nn.Linear(input_dim, dim)) layers.append(nn.BatchNorm1d(dim)) layers.append(nn.ReLU(inplace=True)) if dropout_p is not None: layers.append(nn.Dropout(p=dropout_p)) input_dim = dim self.feature_dim = fc_dims[-1] return nn.Sequential(*layers) def _init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity='relu' ) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def featuremaps(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x4a = self.layer4[0](x) x4b = self.layer4[1](x4a) x4c = self.layer4[2](x4b) return x4a, x4b, x4c def forward(self, x): x4a, x4b, x4c = self.featuremaps(x) v4a = self.global_avgpool(x4a) v4b = self.global_avgpool(x4b) v4c = self.global_avgpool(x4c) v4ab = torch.cat([v4a, v4b], 1) v4ab = v4ab.view(v4ab.size(0), -1) v4ab = self.fc_fusion(v4ab) v4c = v4c.view(v4c.size(0), -1) v = torch.cat([v4ab, v4c], 1) if not self.training: return v y = self.classifier(v) if self.loss == 'softmax': return y elif self.loss == 'triplet': return y, v else: raise KeyError('Unsupported loss: {}'.format(self.loss))
def init_pretrained_weights(model, model_url): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ pretrain_dict = model_zoo.load_url(model_url) model_dict = model.state_dict() pretrain_dict = { k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size() } model_dict.update(pretrain_dict) model.load_state_dict(model_dict) """ Residual network configurations: -- resnet18: block=BasicBlock, layers=[2, 2, 2, 2] resnet34: block=BasicBlock, layers=[3, 4, 6, 3] resnet50: block=Bottleneck, layers=[3, 4, 6, 3] resnet101: block=Bottleneck, layers=[3, 4, 23, 3] resnet152: block=Bottleneck, layers=[3, 8, 36, 3] """ def resnet50mid(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNetMid( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 4, 6, 3], last_stride=2, fc_dims=[1024], **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnet50']) return model